

CritaC Infotech

R&D Projects | Certification Courses | Training

IEEE PROJECT TITLES 2019-20 DOMAIN : POWER ELECTRONICS

Prabu V, Development Manager, critacinfotech@gmail.com www.critac.org +91 95780 11100, +91 9715163446

For Abstract, Base Papers and More Titles visit our website.

www.critac.org

S .N	TITLE NAME
1	WIRELESS POWER TRANSMISION
2	SPEED CONTROL OF THREE PHASE INDUCTION MOTOR USING ARDUINO
3	DSP BASED MULTILEVEL INVERTER
4	THREE PHASE INDUCTION MOTOR SPEED CONTROL USING DSPIC CONTROLLER KIT
5	SPEED CONTROL OF BLDC MOTOR EMPLOYING ZETA CONVERTER
6	LUO CONVERTER
7	INDUCTION MOTOR CONTROL BY EMPLOYING SEPIC CONVERTER
8	SINGLE PHASE CASCADE 5 LEVEL QUASI Z SOURCE INVERTER
9	TRANSFORMERLESS SINGLE PHASE INVERTER
10	IOT BASED SPEED MONITORING USING PROXIMITY SENSOR
11	IOT BASED THREE PHASE INDUCTION MOTOR SPEED CONTROL AND MONITORING
12	HIGH GAIN FLYBACK CONVERTER
13	FIFTEEN LEVEL INVERTER USING 11 POWER SWITCHES
	AUTOMATIC STREET LIGHT INTENSITY CONTROL USING HIGH BOOST DC TO DC
14	CONVERTER
15	INTERLEAVED HIGH VOLTAGE GAIN DC TO DC CONVERTER
16	FIFTEEN LEVEL CASCADED MULTILEVEL INVERTER USING 12POWER SWITCHES
17	SPEED CONTROL OF BLDC MOTOR BY EMPLOYING LUO CONVERTER
18	SPEED CONTROL OF DC MOTOR USING SINGLE PHASE FULL CONVERTER
19	THREE PHASE QUASI Z-SOURCE INVERTER
20	INTERLINE DYNAMIC VOLTAGE RESTORER
21	FIVE LEVEL CASCADED MULTILEVEL INVERTER
22	NINE LEVEL CASCADED MULTILEVEL INVERTER
23	NINE LEVEL CASCADED MULTILEVEL INVERTER WITH MOTOR CONTROL
24	ELEVEN LEVEL MULTILEVEL INVERTER WITH REDUCED COMPONENTS
	SPEED CONTROL OF THREE PHASE INDUCTION MOTOR BY EMPLOYING MODIFIED
25	SEPIC CONVERTER
26	DC MOTOR CONTROL BY SINGLE PHASE FULL CONVERTER USING ARDUINO

27	SPEED CONTROL OF THREE PHASE INDUCTION MOTOR BY EMPLOYING BOOST
	CONVERTER
28	SPEED CONTROL OF BLDC MOTOR BY EMPLOYING BOOST CONVERTER
	SINGLE PHASE MOTOR CONTROL BY EMPLOYING MODIFIED SEPIC CONVERTER WITH
29	INVERTER
30	SPEED CONTROL OF BLDC MOTOR BY EMPLOYING SEPIC CONVERTER
	SPEED CONTROL OF SINGLE PHASE INDUCTION MOTOR BY EMPLOYING BOOST
31	CONVERTER
32	SINGLE PHASE AC MOTOR CONTROL USING RASPBERRY PI
	TRANSFORMER BASED MULTILEVEL INVERTER TOPOLOGY WITH REDUCED
33	COMPONENTS
34	CLOSED LOOP CONTROL OF CUK CONVERTER
35	NOVEL SEVEN LEVEL INVERTER USING DSP CONTROLLER
36	SPEED CONTROL OF AC MOTOR USING LUO CONVERTER
37	FIVE LEVEL CASCADED MULTILEVEL INVERTER BY EMPLOYING SEPIC CONVERTER
	CLOSED LOOP CONTROL FOR SWITCHED CAPACITOR BASED DUAL SWITCH HIGH
38	BOOST CONVERTER
39	NOVEL SEVEN LEVEL DC TO AC INVERTER USING PIC CONTROLLER
40	NEW FIVE-LEVEL ACTIVE NEUTRAL POINT CLAMPED CONVERTER
41	SPEED CONTROL OF AC MOTOR USING BRIDGELESS SEPIC CONVERTER
42	CLOSED LOOP CONTROL OF ZETA CONVERTER
43	ELEVEN LEVEL CASCADED MULTILEVEL INVERTER USING 12 POWER SWITCHES
44	A SINGLE SWITCH HIGH STEP-UP CONVERTER
45	DC TO DC CONVERTER WITH SOFT SWITCHING CAPABILITY
46	CONVENTIONAL BUCK CONVERTER
47	DOUBLE FREQUENCY BUCK CONVERTER
48	DC MOTOR SPEED CONTROLLER
49	WIRELESS POWER TRANSMISSION WITH SINGLE PHASE INVERTER
50	DYNAMIC VOLTAGE RESTORER
51	INTERLEAVED HIGH STEP-UP CONVERTER

52	MULTILEVEL INVERTER USING ARDUINO
53	DESIGN AND ANALYSIS OF HIGH GAIN MODIFIED SEPIC CONVERTER
54	CLOSED LOOP CONTROL SCHEME FOR A DC-DC SEPIC CONVERTER
55	STEP UP DC DC CONVERTER BASED ON THREE WINDING INDUCTOR
56	QUADRATIC BOOST CONVERTER
57	SINGLE PHASE INVERTER USING ARDUINO
58	FULL-RANGE SOFT-SWITCHING BUCK-BOOST WITH PI
59	INDUCTION MOTOR SPEED CONTROL USING SPARTAN6 FPGA KIT
60	BLDC MOTOR CONTROL USING DSPIC MICROCONTROLLER
61	IMPROVED MPPT METHOD FOR RAPIDLY CHANGING ENVIRONMENTAL CONDITIONS
	AVERAGE ABSOLUTE FREQUENCY DEVIATION VALUE BASED ACTIVE ISLANDING
62	DETECTION TECHNIQUE
63	LUO CONVERTER USING PI CONTROLLER USING MATLAB SIMULINK
64	DC -DC CONVERTER USING PI CONTROLLER USING MATLAB SIMULINK
65	TRANSFORMER LESS GRID CONNECTED PV SYSTEM USING MATLAB SIMULINK
66	THREE PORT DC - DC CONVERTER FOR SOLAR PV SYSTEM USING MATLAB SIMULINK
67	SEPIC CONVERTER USING SLIDING MODE CONTROL USING MATLAB SIMULINK
68	SEPIC WITH BLDC MOTROL CONTROL USING FUZZY LOGIC USING MATLAB SIMULINK
69	SEPIC CONVERTER USING PI CONTROLLER USING MATLAB SIMULINK
70	33 LEVEL MODULAR MULTI LEVEL INVERTER USING MATLAB SIMULINK
	INTERLEAVED FLY-BACK INVERTER FOR SOLAR PV SYSTEM USING MATLAB
71	SIMULINK
72	SINGLE-STAGE BOOST INVERTER FOR PV APPLICATION USING MATLAB SIMULINK
73	PV BASED HIGH STEP UP DC-DC CONVERTER USING MATLAB SIMULINK
74	DFIG BASED WIND TURBINE SYSTEM USING MATLAB SIMULINK
75	THREE LEVEL DC-DC BOOST CONVERTER OPEN LOOP USING MATLAB SIMULINK
76	THREE LEVEL DC-DC BOOST CONVERTER CLOSED LOOP USING MATLAB SIMULINK
77	PI CONTROLLER BASED DC-DC BUCK BOOST CONVERTER USING MATLAB SIMULINK
78	ISOLATED DC-DC BUCK BOOST CONVERTER USING MATLAB SIMULINK
79	MULTI LEVEL INVERTER FOR SOLAR PV ARRAY USING MATLAB SIMULINK

	FULL-RANGE SOFT-SWITCHING ISOLATED BUCK-BOOST CONVERTERS WITH
	INTEGRATED INTERLEAVED BOOST CONVERTER AND PHASE-SHIFTED CONTROL WITH
80	PI CONTROL
	FULL-RANGE SOFT-SWITCHING ISOLATED BUCK-BOOST CONVERTERS WITH
81	INTEGRATED INTERLEAVED BOOST CONVERTER AND PHASE-SHIFTED CONTROL
82	OPEN LOOP CONTROL OF BUCK AND BOOST CONVERTER
83	OPEN LOOP CONTROL OF BOOST CONVERTER
84	SINGLE PHASE HALF BRIDGE INVERTER
85	SINGLE PHASE STEP DOWN CYCLOCONVERTER
86	CLOSED LOOP CONTROL OF CHOPPER FED DC MOTOR CONTROL
87	CLOSED LOOP CONTROL OF BUCK CONVERTER
88	CLOSED LOOP CONTROL OF BOOST CONVERTER
89	CLOSED LOOP CONTROL OF BLDC MOTOR
90	CLOSED LOOP CONTROL OF BUCK BOOST CONVERTER
91	CLOSED LOOP CONTROL OF BUCK BOOST CONVERTER
	BRIDGELESS BOOST RECTIFIER FOR LOW-VOLTAGE ENERGY HARVESTING
92	APPLICATIONS
93	BRIDGELESS AC-DC BUCK CONVERTER
94	BRIDGELESS AC-DC BOOST CONVERTER
95	BOOST CONVERTER
96	ANALYSIS OF PV VOLTAGE GENERATION
97	3 PHASE CASCADED THREE LEVEL INVERTER USING MATLAB SIMULINK
98	3 PHASE CASCADED SEVEN LEVEL INVERTER USING MATLAB SIMULINK
99	CASCADED 5 LEVEL 3 PHASE MULTI LEVEL INVERTER USING MATLAB SIMULINK